Genetics: Part IV

Genetic Disorders
What has gone wrong?
c. Certain human genetic disorders can be attributed to the inheritance of single gene traits or specific chromosomal changes, such as nondisjunction.

Illustrative examples: • Sickle cell anemia
• Tay-Sachs disease
• Huntington’s disease
• X-linked color blindness
• Trisomy 21/Down syndrome
• Klinefelter’s syndrome
3.A.4.b Some traits are determined by genes on sex chromosomes.

Illustrative examples

- Sex-linked genes on sex chromosome (X in humans)
- In mammals and flies, the Y chromosome is very small and carries few genes
Small change, Big problem

(a) Normal amino acid sequence

Thr 4
Pro 5
Glu 6
Glu 7

(b) Single change in amino acid sequence

Thr 4
Pro 5
Val 6
Glu 7

Normal red blood cells

Sickled red blood cells

Figure 3-13 Biological Science, 2/e

© 2005 Pearson Prentice Hall, Inc.
Sex Linked Traits

• Traits carried on the sex chromosomes are said to be sex linked.
• In humans, most sex-linked traits are carried on the X chromosome.
• Sex-linked traits are expressed more often in human males than females.
Example of Sex Linked Trait: Hemophilia
What is the probability that the son of a carrier female and a normal male will have hemophilia?
What is the probability that the son of a carrier female and a normal male will have hemophilia?

<table>
<thead>
<tr>
<th></th>
<th>X^H</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^H</td>
<td>X^HX^H</td>
<td>X^HY</td>
</tr>
<tr>
<td>X^h</td>
<td>X^hX</td>
<td>X^hY</td>
</tr>
</tbody>
</table>
Imagine a genetic counselor working with a couple who have just had a child who is suffering from Tay-Sachs disease. Neither parent has Tay-Sachs, nor does anyone in their families. Which of the following statements should this counselor make to this couple?

a. “Because no one in either of your families has Tay-Sachs, you are not likely to have another baby with Tay-Sachs. You can safely have another child.”

b. “Because you have had one child with Tay-Sachs, you must each carry the allele. Any child you have has a 50% chance of having the disease.”

c. “Because you have had one child with Tay-Sachs, you must each carry the allele. Any child you have has a 25% chance of having the disease.”

d. “Because you have had one child with Tay-Sachs, you must both carry the allele. However, since the chance of having an affected child is 25%, you may safely have thee more children without worrying about having another child with Tay-Sachs.”
Example of Sex Linked Trait: Colorblindness

Normal

Protonopia
Color blindness

Draw a Punnett Square to show how a color blind male could produce a family containing colorblind females.
Is your Punnett Square like this one?
Nondisjunction

Meiosis I

Nondisjunction
Nondisjunction

First division

Nondisjunction at second division

\(n + 1 \)

\(n - 1 \)

\(n \)
Trisomy 21
Down syndrome patients have noticeable traits.
Genetic Pedigree

First Generation

Second Generation

U

V

W

Third Generation

X

Y

Z

Key

- ○ = normal female
- □ = normal male
- ● = affected female
- ■ = affected male
- ○ = carrier female
- ■ = carrier male
Huntington’s Disease: A Late-Onset Lethal Disease

• Huntington’s disease is a degenerative disease of the nervous system
• The disease has no obvious phenotypic effects until the individual is about 35 to 40 years of age
• Once the deterioration of the nervous system begins the condition is irreversible and fatal
Huntington’s affects people after reproduction age so it continues to be maintained in a population.
Envision a family in which the grandfather, age 47, has just been diagnosed with Huntington’s disease. His daughter, age 25, now has a 2-year-old baby boy. No one else in the family has the disease. What is the probability that the daughter will contract the disease?

A. 0%
B. 25%
C. 50%
D. 75%
E. 100%
NONNUCLEAR INHERITANCE
• 3.A.4.c. Some traits result from nonnuclear inheritance

• 1. Chloroplasts and mitochondria are randomly assorted to gametes and daughter cells; thus traits determined by chloroplasts and mitochondrial DNA do not follow simple Mendelian rules.

• 2. In animals, mitochondrial DNA is transmitted by the egg and not by the sperm; as such, mitochondrial-determined traits are maternally inherited.
A. Nuclear DNA is inherited from all ancestors.

B. Mitochondrial DNA is inherited from a single lineage.
Mitochondrial Inheritance

• Sometimes referred to as Maternal Inheritance

• More than 40 known human disorders are attributed to mitochondrial inheritance.

• Links have been made between mtDNA and diabetes, certain cancers and aging just to name a few.
• 3.A.3.d
• Many ethical, social and medical issues surround human genetic disorders.
• Illustrative examples
 – Reproduction issues
 – Civic issues such as ownership of genetic information, privacy, historical context
For people at risk of Huntington's disease, deciding whether or not to have a genetic test is a difficult, and very personal decision. There is no right or wrong decision.
Created by:

Debra Richards
Coordinator of K-12 Science Programs
Bryan ISD
Bryan, TX